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ORTHOGONAL PATTERNS IN BINARY NEURAL NETWORKS 

Yoram Baram* 

Abstract 

A binary neural network that stores only mutually orthogonal patterns is shown 

The latter are shown to be the only members of the 
to converge, when probed by any pattern, to a pattern in the memory space--the space 
spanned by the stored patterns. 
memory s ace under a certain coding condition, which allows maximal storage of 
M = (2N+ patterns, where N is the number of neurons. The stored patterns are 
shown to have basins of attraction of radius N/(2M), within which errors are cor- 
rected with probability 1 in a single update cycle. When the probe falls outside 
these regions, the error correction probability can still be increased to 1 by 
repeatedly running the network with the same probe. 

1. Introduction 

A mathematical model for biological neural networks, consisting of Hebb's 
storage mechanism [l] and McCulloch-Pitts' retrieval mechanism [2], was shown by 
Hopfield [ 3 ]  not only to exhibit the collective behavior of the network as an asso- 
ciative (content-addressable) memory, but also to be technologically realizable. 
The model consists of N variables x1, ..., xN, corresponding t o  the neurons of the 
network, each capable of having one of two values 21. 
defined as the vector - x = (xl, ..., xNi2) where (-IT denotes transpose. The infor- 

which are calculated according to the Hebbian rule E l ]  

The state of the network is 

- mation in M given patterns x ( 1 )  , - x ,..., x(~) is stored in synaptic parameters, 

M 

Ti, j ( 1 .  la) 
a= 1 

Information retrieval is initiated by a probe (initial state) (0). Neurons are 
then selected at random, one at a time, and their states are updated according to 
the McCulloch-Pitts rule [2] 

*Y. Baram is a Senior Research Associate of  the National Research Council 
at the NASA Ames Research Center, Moffett Field, CA 94035, on sabbatical leave 
from the Department of Electrical Engineering, Technion, Israel Institute of 
Technology, Haifa 32000, Israel. 
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(l.lb) 

The network was shown by Hopfield [31 to be globally stable in the sense that, 
initialized by any probe, it will converge to some final state. He also observed by 
simulation that the stored patterns can be retrieved without severe error if M 
does not exceed 0.15 N, for N = 100. McElice et al. [4] and Bruce et al. [ 5 ]  
independently showed that the number of random patterns that can be retrieved wit-: 
finite probability cannot exceed 
tion that "for N = 100, a pair of random memories should be separated by 
50 25 Hamming units" [ 3 ] .  
neuron values, they are orthogonal in the Euclidean sense. The construction of 
orthogonal patterns requires preprocessing or encoding of information. 
encoding mechanisms, which involve certain notions of pattern orthogonalization, 
have been suggested by Kohonen [6] and by Grossberg [7]. 
neural networks has been suggested by Platt and Hopfield [8] for communication 
purposes and by Chiueh and Goodman [9] for pattern classification. 

N/(2 log N). Hopfield further observed by simula- 

When the stored patterns differ by half the bits or 

Neural 

Decoding coded patterns by 

In this paper we first observe that when the stored patterns are mutually 
orthogonal, they are equilibrium states of the network (1 .1 ) .  
slight modification of the model, which allows storage only of mutually orthogonal 
patterns. The network state, initialized by any probe, is shown to converge to a 
pattern in the space spanned by the stored patterns, which we call the memory 
space. There can be, at most, N orthogonal patterns. It is shown that when the 
stored patterns satisfy a certain coding condition, they are the only members of the 
memory space. 
is in agreement with Hopfield's empirical observation. A particular code construc- 
tion method is proposed. A network loaded with such code acts as a decoder. The 
stored patterns are shown to have basins of attraction of radius 
initialized within this range of a stored pattern, the network state onverges with 
probability 1 to that pattern in less than a neural update cycle time. When the 
probe falls outside this range, the probability of retrieving the nearest stored 
pattern can still be increased to 1 by repeatedly running the network with the same 
probe. 

Then we propose a 

The maximum number of such code words is shown to be (2N)OW5, which 

N/(2M). When 

2. The Memory Space 
I 

I For a stored pattern to be retrievable, it is necessary that it is an equilib- 
rium point of the network, that, once reached is never left. From (1.1) we have 

M 

i= 1 
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Let the Hamming distance between ,(i) and - x(') be denoted by d[~(i)~(Q)l and let 
r[~(~),x(')] - = (l/N)d[x (i) ,- ~ ( " 1 .  It can be readily verified that 

hence 

M 

i =O 

i+Q 

Tx(&) has the same sign as It can be seen that 
right-hand side of (2.1) offsets the first. 

,('I, unless the second term on the 
Such-offset cannot happen if 

This is a sufficient condition for the stored patterns to be equilibrium points of 
the network. It is not difficult to see that this condition is equivalent to the 
orthogonality condition 

A question of interest is, how can the orthogonality condition be maintained by the 
neural network. Denoting by T(n) the matrix of synaptic parameters corresponding 
to n stored patterns, let us modify the storage rule to be 

p(n) otherwise 

and denoting 

N 
2 i = Ti,J~j 

j=l 
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let us modify the neuron update rule to be 

xi =\;I if zi < o 
i if zi = 0 

(2.3b) 

These slight modifications of (1.la) and (l.lb) have the physical interpretation 
that the synaptic parameters remain unchanged by the probe if there is an energy 
release by neural firing activity. This can only occur according to (2.3b) if the 
probe is not orthogonal to some of the previously stored patterns. If the probe is 
orthogonal to all the stored patterns, that is, when it is in the null space of T, 
energy release by firing cannot take place and, instead, relief of potential energy 
is provided by a change in the synapses, meaning that the probe is stored as a new 
pattern. Near orthogonality may be represented by the condition lzil < E 

small integer E .  In the rest of the paper we assume strict orthogonality of the 
stored patterns for mathematical simplicity. We next show that complete energy 
release means convergence into the space spanned by the stored patterns, which, 
according to the mechanism (2.3b), cannot occur if the probe is orthogonal to these 
patterns. 

for a 

The state space of the network is the collection of all vectors of dimension 
N, whose components have values kl. We define the network's memory space, denoted 
by X, as the subspace of the state space, which is spanned by the stored patterns, 
that is, the vectors in the state space that can be obtained as linear combinations 
of the 
stored 

where 

where 

stored patterns. The orthogonal projection of an arbitrary pattern - x on a 
pattern 5") is given by 

O m 5  denotes the Euclidean norm of x. It can be seen that 11x1 I = (x 2) - 

M M 

U 

a= 1 a= 1 

A 

x is the projection of X and the last equality follows from the 
fact that the stored patterns a = 1 ,.. . ,M are mutually orthogonal. 
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The energy  f u n c t i o n  

can be  s e e n  t o  have t h e  v a l u e  

rn rn 

a 

for each of t h e  stored p a t t e r n s .  For a n  a r b i t r a r y  p a t t e r n  5 ,  it  h a s  t h e  v a l u e  

By t h e  Cauchy-Schwartz i n e q u a l i t y  

Suppose t h a t  - x does n o t  belong to  X ,  then  

0.5 y i e l d i n g ,  s i n c e  I l l r l I  = N 

T A  - -  x x < N  

hence,  

2 E ( 5 )  > -N 

I t  follows t h a t  for a s ta te  5 t h a t  does n o t  belong t o  X ,  t h e  e n e r g  is n o t  mini-  
mal. On t h e  other hand, i f  - x belongs  t o  X ( n o t  n e c e s s a r i l y  5 = - xfa)), t h e n  

A 

- -  x = x  

y i e l d i n g  
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We have shown t h a t  t h e  minimal v a l u e  of t h e  energy  f u n c t i o n  is 
t h e  memory s p a c e  X have t h i s  minimal energy v a l u e ,  w h i l e  p o i n t s  o u t s i d e  t h e  memory 
space  have h i g h e r  energy.  
a long  any p a t h  i n  t h e  s ta te  s p a c e  of h i s  network. McEliece e t  a l .  [ 4 ]  elaborated on 
H o p f i e l d ' s  a n a l y s i s  and showed t h a t  t h e  energy can  remain unchanged for  o n l y  a 
f i n i t e  number of s t e p s .  T h i s  i m p l i e s  t h a t  t h e  Hopf ie ld  network converges  t o  a p o i n t  
o f  minimal energy .  
a l g o r i t h m  o n l y  by t h e  t r a n s f o r m a t i o n  of p o i n t s  for  which, i n i t i a l l y ,  Tx - = 0 i n t o  
new stored p a t t e r n s  having  minimum energy ,  it converges ,  as t h e  Hopfield model, t o  
minimum energy  p o i n t s .  I t  follows t h a t  for o r t h o g o n a l  stored p a t t e r n s  the  network 
w i l l  converge to  a p o i n t  i n  t h e  memory s p a c e .  

-N2.  All p o i n t s  i n  

I t  was shown by Hopf ie ld  [ 3 ]  t h a t  t h e  energy decreases 

S i n c e  t h e  a l g o r i t h m  (2.3b)  d i f fers  from the  McCulloch-Pi t ts  

3. Perfect S t o r a g e  

We n e x t  show t h a t  under  a c e r t a i n  c o n d i t i o n  on t h e  stored p a t t e r n s  t h e  memory 
s p a c e  c o n t a i n s  o n l y  t h e s e  p a t t e r n s .  
s t o r a g e . "  The stored p a t t e r n s  can t h e n  d e f i n e  a set  of code words o r ,  s imply ,  a 
code t h a t  can be used for  i n f o r m a t i o n  r e p r e s e n t a t i o n .  Suppose t h a t  t h e  scalars 
c1 ,c2 ,  ..., cM 

T h i s  s i t u a t i o n  may be c h a r a c t e r i z e d  as " p e r f e c t  

s a t i s f y  t h e  e q u a t i o n  

are t h e  stored p a t t e r n s  and 5 is a p e r m i s s i b l e  s ta te  of the  ( 1 )  where , . ..,x 
network, t h a t  is, a v e c t o r  whose components have v a l u e s  21. Then, d e f i n i n g  t h e  
m a t r i x  

and t h e  v e c t o r  

we have 

Ac = ( 3 . 2 )  

y i e l d i n g  

T T  T c A AC - = 11 = N - (3 .3)  

But s i n c e  

T A A NIM 
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where IM is t h e  MxM i d e n t i t y  matrix, it follows from ( 3 . 3 )  t h a t  

+ ... + c2 - 1 2 2  = c1 + c2 T 2 2  
M -  ( 3 .4 )  

Denoting by 
be w r i t t e n  as 

x ! ~ )  t h e  j t h  e lement  of - x ( ~ ) ,  t h e  s q u a r e  of t h e  j t h  row o f  (3 .1 )  can 
J 

i , k  

or 

c c; + x ( i ) x ( k ) c  j j i k  c = 1 

i i t k  

which, by ( 3 . 4 )  y i e l d s  

The memory s p a c e  w i l l  c o n t a i n  o n l y  t h e  stored p a t t e r n s  i f  t h e  o n l y  s o l u t i o n  t o  (3.5) 
is 

c c  = o  for i , k  = 1, ..., M , i * k ( 3 . 6 )  i k  

which means t h a t ,  a t  most, one  of t h e  c o e f f i c i e n t s  ci is non-zero.  Def in ing  t h e  
scalars 

t h e  v e c t o r s  

and t h e  m a t r i x  

(3.7) 

( 3 . 8 )  
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and also denoting 

... c c 1'1 'lCM '2'3 '2'4 M-1 M 
c = [c1c2 c1c3 ... - (3.10) 

equation (3.5) can be written for all j,i,k as 

Yc - = 0 (3.11) 

This equation has only the zero solution (3.6) if and only if 
rank. The number of columns in Y is given by 

Y has full column 

M - 1 + M - 2 + ... + 1 = M(M - 1)/2 
It follows that the memory space will contain only the stored patterns if the condi- 
t ion 

col. rank Y = M(M - 1)/2 (3. 

is satisfied. Since the number of rows of Y is N, a necessary condition 
t o  have full column rank is 

M(M - 1) I 2N (3. 

For large M, condition (3.13) may be written as 

2) 

for Y 

3) 

(3.14) 

We note that for N = 100, the latter condition takes the value M I 14, which is in 
agreement with the capacity bound obtained empirically by Hopfield [3]. 
that the latter condition is satisfied, condition (3.12) is not guaranteed to hold 
for every choice of orthogonal patterns, as illustrated by the following examples. 
Consider first the orthogonal patterns formed by the columns of the matrix (where 
the symbol 1 has been omitted) 

Provided 

which defines a Hadamard code 
verified that if the stored patterns are the first two columns of 
only patterns in the memory space. Indeed, if 

H Q , ~  (see, e.g., [lo], pg. 44). It can be readily 
H, they are the 

c l q  + cx = x -2 - 
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where - x is permissible, then 

2 (cl + c2) = 1 

and 

2 (cl - c2) = 1 

yielding 

c c  = o  1 2  

2 2  Hence, either c1 = 0 or c2 = 0 and since c1 + c2 = 1, the assertion follows. 
Similarly, if all three columns of H are stored, they are the only patterns in the 
memory space, as the product matrix Y, obtained as 

+ + +' 
- ' +  - 
+ - -  

= [  - - +. 

can be seen to have mutually orthogonal columns. 

Next, suppose that the stored patterns are the columns of the matrix 

H =  

I + + + +  

+ - + -  
+ + - -  
+ - - +  
+ + + +  
+ - + -  
+ + - -  
+ - -  +, 

Which are the first four columns of the Hadamard matrix obtained by the Sylvester 
matrix construction (see [lo], p. 45). It can be seen that the product matrix 
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Y =  

does not have full column rank (the third and the fourth columns are the same and so 
are the second and the fifth and the first and the sixth). On the other hand, 
replacing the last columns in H by another, as in 

H =  

yields the product matrix 

Y =  

+ + + + '  
+ - + +  
+ + - +  
+ - - +  

+ + + -  
+ - + -  
+ + - -  
+ - - -  

.t + + + + +' 

- + + - - +  
+ - + - + -  
- - + + - -  

+ + - + - -  
- + - - + -  

+ - - - - +  

- - - + + + ,  

which can be seen to have mutually orthogonal columns. 

(3 .15)  

The above example shows that the satisfaction of condition (3.12) is not guar- 
I anteed by orthogonality of the code words but, rather, depends on the particular 

10 



choice of the code. 
struction that guarantees satisfaction of the condition. 
construction. Let N = 2k for some positive integer k and suppose, without l o s s  
of generality, that the first code word is ( +  + . . . +)  . Divide the first word 
into two equal sections and change the signs of the bits in one section. Dividc 
each of these sections again into two equal sections and change the signs in one 
This operation can be repeated only k times and results in k + 1 mutually 
orthogonal code words. 
maintain the original division modulo sign change, the resulting product words are 
mutually orthogonal. Hence, the desired condition is satisfied. Such code con- 
struction f o r  N = 8 yields 

The question arises whether there is a systematic code con- 
We next suggest such a 

T 

Since the bit-wise products of the resulting code words 

H =  

+ + + +  
+ + + -  
+ + - +  
+ + - -  
+ - + +  
+ - + -  
+ - - +  
,+ - - - 

which can be seen to include the same code words as (3.15). The latter was shown 
above to satisfy the condition. 

4. Error Correction 

We have seen that under condition (3.12) the memory space contains only the 
stored patterns. Consequently, the network, probed by any pattern, will converge to 
one of the stored patterns. If the latter are viewed as code words, the probe may 
be viewed as such a word corrupted by noise. Convergence to the code word closest 
to the probe in Hamming distance then means error correction. We next show that the 
network has the capability of correcting a certain number of bits, with probabil- 
ity 1 .  
Suppose that ,(e) is the stored pattern closest to the probe 11. We have 

This number defines the "basins of attraction" of the stored patterns. 
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M 

j=1 

Let us use the abbreviated notation d = d[g('),Z]. Suppose that the i'th neuron 
is to be updated. 
the sign of [T5Ii 

The distance d will decrease or remain the same if and only if 
is the same as that of [ E  ('1 

have the same sign, opposite to that of ;;")Ii, and 
In the worst case all [x(j)li, j # 

(j) 1 d[x ,111 = 2 N - d for all j f 

which yields the maximum offset of the first term on the right-hand side of (4.1) by 
the second. 
[x(')Ii - 

In this situation, the sign of [TxIi will be the same as that of 
if and only if 

1 (N - 2d) > (M - 1)[N - 2(2 N - d)] 

N d < -  2M 

When a code word is corrupted so that, at most, N/(2M) of its bits are erroneous, it 
will be corrected with probability 1 by the network in a single neural update 
cycle. 
"basin of attraction." When the probe falls outside this range, the network's state 
may still converge with high probability to the closest stored pattern, depending on 
its distance from the probe. 

The neighborhood within a distance N/(2M) about a stored pattern is its 

Suppose that the network is rerun repeatedly with the same probe. The final 
state of the first run is registered. 
replaces that of the previous one if it is closer to the probe and is discarded 
otherwise. Since the neuron selections for update are mutually independent, so are 
the resulting state trajectories in the different network runs. 
in one of the stored patterns. 
closest to the probe is at least as large as that of converging to any other stored 
pattern, it is finite. 
pattern closest to the probe increases to 1 as the number of runs is increased to 
infinity . 

The final state of each consecutive run 

Each run terminates 
Since the probability of converging to the pattern 

It follows that the probability of recovering the stored 
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5. Conclusion 

The storage of mutually orthogonal patterns in a binary neural network guaran 
tees convergence of the network state, initialized by any pattern, to a pattern in 
the memory space. 
the stored patterns. 
bility 1 when it is initialized within the latter's basin of attraction. Otherwise, 
the probability of error correction can be increased asymptotically to 1 by 
repeatedly running the network with the same probe. 

Under a certain coding condition, the memory space contains oniy 
The state converges to the nearest stored pattern with pr-ba- 
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